Al igual que la tarea de detección de circulos con un mismo radio, emplearemos estas ecuaciones:
Código:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
from PIL import Image, ImageDraw, ImageFont | |
import sys, time, random, math | |
def centrocirculo(picx, picy, image, salto = 10, bias=10.0): | |
frecuencia = dict() | |
circulomat = dict() | |
for i in range(image.size[0]): | |
for j in range(image.size[1]): | |
(Rx, Gx, Bx) = picx[i,j] | |
(Ry, Gy, By) = picy[i,j] | |
gx = float(Rx+Gx+Bx)/3 | |
gy = float(Ry+Gy+By)/3 | |
gradiente = math.sqrt(math.pow(gx, 2) + math.pow(gy, 2)) | |
if gradiente < -1*bias or gradiente > bias: | |
cost = (gx/gradiente) | |
sint = (gy/gradiente) | |
theta = math.atan2(gy, gx) | |
r = 60 | |
centro = (int( i - r * math.cos(theta+math.radians(90.0))), int( j - r * math.sin(theta+math.radians(90.0)))) | |
centro = ((centro[0]/salto)*salto, (centro[1]/salto)*salto) | |
circulomat[i,j] = centro | |
if not centro in frecuencia: | |
frecuencia[centro] = 1 | |
else: | |
frecuencia[centro] += 1 | |
else: | |
circulomat[i, j] = None | |
return circulomat, frecuencia | |
def amarillo(): | |
return (255, random.randint(100,255), random.randint(0, 50)) | |
def draw_lines(image, frecuencia, circulomat): | |
pic = image.load() | |
font = ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeSansBold.ttf", 18) | |
draw = ImageDraw.Draw(image) | |
cont = 1 | |
colores = dict() | |
for i in frecuencia.keys(): | |
colores[i] = amarillo() | |
r = 2 | |
draw.ellipse((i[0]-r, i[1]-r, i[0]+r, i[1]+r), fill=(0, 255, 0)) | |
draw.text((i[0]+r+3, i[1]), ('C'+str(cont)), fill=(0, 255, 0), font=font) | |
print 'C'+str(cont) | |
cont += 1 | |
for i in range(image.size[0]): | |
for j in range(image.size[1]): | |
if circulomat[i, j] in frecuencia: | |
try: | |
pic[i,j] = colores[circulomat[i, j]] | |
except: | |
pass | |
return image | |
def deteccioncirculo(image_name, output="output.png"): | |
f = Filtros() | |
imagex = f.aplicar_mascara(image_name, ["sobelx"], [1.0/10.0], cmd="i") | |
imagey = f.aplicar_mascara(image_name, ["sobely"], [1.0/10.0], cmd="i") | |
image = Image.open(image_name) | |
salto = 30 | |
circulomat, frecuencia = centrocirculo(imagex, imagey, image, salto = salto, bias=10.0) | |
for i in frecuencia.keys(): | |
if frecuencia[i] < salto*8: | |
frecuencia.pop(i) | |
else: | |
print frecuencia[i], i | |
draw_lines(image, frecuencia, circulomat) | |
image.save(output) | |
def main(): | |
deteccioncirculo(sys.argv[1]) | |
main() |