- Primero se realiza la escala de grises
- Después se utiliza un filtro medio
- Ya con el filtro, se realiza es sacar la diferencia entre la imagen de escala de grises y la imagen que se genero con el filtro medio
Código:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def normalizar(image, maxv): | |
mat = image.load() | |
ratio = 255.0/maxv | |
for x in range(image.size[0]): | |
for y in range(image.size[1]): | |
mat[x, y] = int(mat[x, y]*ratio) | |
return image | |
def diferencia(izq, der): | |
output = izq.copy() | |
matO = output.load() | |
matI = izq.load() | |
matD = der.load() | |
maxv = 0 | |
for x in range(output.size[0]): | |
for y in range(output.size[1]): | |
cord = (x, y) | |
matO[cord] = fabs(matI[cord]-matD[cord]) | |
if matO[cord] > maxv: | |
maxv = matO[cord] | |
return normalizar(output, maxv) | |
def nuevo_visitados(size): | |
visitados = dict() | |
for i in range(size[0]): | |
for j in range(size[1]): | |
visitados[i,j] = False | |
return visitados | |
def promediar_esquinas(image): | |
esquinas = list() | |
mat = image.load() | |
for x in range(image.size[0]): | |
for y in range(image.size[1]): | |
if mat[x, y] == 255: | |
points = dfs_promedio(mat, (x, y), image.size) | |
promedio = [0.0, 0.0] | |
for p in points: | |
promedio[0] += p[0] | |
promedio[1] += p[1] | |
promedio = (int(promedio[0]/len(points)), int(promedio[1]/len(points))) | |
esquinas.append(promedio) | |
for cord in esquinas: | |
mat[cord] = 255 | |
return esquinas |
Imágenes/resultado:
1 comentario:
Pues... 5 pts. Explicas casi nada y en los ejemplos falta detectar muchas esquinas.
Publicar un comentario